Министерство образования Тверской области ГБПОУ «Удомельский колледж»

Рассмотрено Методическим объединением ГБПОУ «Удомельский колледж». Протокол № 1 от 66.02.2019 г. Председатель (В.А. Суханова)

Методическая разработка открытого урока по дисциплине «Инженерная графика»

Тема: Расчетно-графическая работа «Сборочный чертеж с применением резьбовых соединений»

Выполнила: Симачева Е.Н.

Преподаватель дисциплин профессионального цикла

Содержание

		стр.
I.	Рецензии	3
II.	Пояснительная записка	6
III.	Тематический план	9
IV.	Структурный план	10
V.	Приложения	13

Репензия

Данная рецензия дана на методическую разработку урока по дисциплине «Инженерная графика».

Тема: Расчетно-графическая работа «Сборочный чертеж с применением резьбовых соединений»

Методическая разработка составлена преподавателем дисциплин профессионального цикла Симачевой Е.Н.

Методическая разработка занятия составлена в соответствии с требованиями Федерального государственного образовательного стандарта и рабочей программы дисциплины «Инженерная графика».

Из методической разработки урока видно, что учебное занятие продумано и хорошо спланировано. Преподаватель выделяет четкую структуру урока, которая соответствует методическим требованиям к данному типу учебного занятия.

Тема учебного занятия обозначена, указаны обучающие, развивающие и воспитательные цели. Цель деятельности учащихся на занятии формируется закреплением раннее изученного материала. Все этапы учебного занятия спланированы. Каждая часть занятия: повторение, самостоятельная работа реализованы как по времени, так и по объему. В этом сказывается одна из особенностей культуры педагогического труда преподавателя.

Основной задачей, которую ставит преподаватель, является создание условий обучающимся для самостоятельной работы. Самостоятельная работа обучающихся имеет практическую направленность, которая стимулирует учебно-познавательную деятельность, занимает большую часть — что является высоким показателем учебного занятия. Практические занятия — это одна из наиболее целесообразных форм работы обучающихся на аудиторных занятиях. Они призваны обобщить, расширить, углубить и отработать навыки, полученные в ходе теоретического обучения. Практические занятия позволяют привить учащимся навыки к анализу новой информации, к умению делать выводы, принимать решения.

Для повышения интереса к занятию, преподаватель использует методы, которые позволяют существенно расширить возможности индивидуализации и дифференциации обучения, учесть индивидуальные особенности, осуществить самостоятельную учебную деятельность, в ходе которой обучаемый самообучается и саморазвивается.

При проведении занятия преподаватель использует мультимедийный проектор, что позволяет сделать учебный процесс более наглядным. Занятие снабжено необходимым для работы дидактическим и раздаточным материалом.

Смена видов деятельности на каждом этапе позволят снизить утомляемость студентов, повысить их работоспособность. Запоминание

материала облегчается за счёт переключения внимания с одного вида деятельности на другой, подключения различных видов памяти (слуховая, зрительная). Самостоятельная и практическая работа облегчит понимание материала каждым обучающимся благодаря активной мыслительной деятельности.

Представленная методическая разработка расчетно-графического занятия направлена на формирование основных профессиональных компетентностей обучающихся.

Методическая разработка занятия по дисциплине «Инженерная графика» составлена грамотно и рекомендована для использования в учебном процессе при подготовке квалифицированных специалистов.

Методист ГБПОУ «Удомельский колледж» Дересф В.А. Суханова

Рецензия

Данная рецензия дана на методическую разработку открытого урока по дисциплине «Инженерная графика».

Тема: Расчетно - графическая работа «Сборочный чертеж с применением резьбовых соединений».

Методическая разработка составлена преподавателем дисциплин профессионального цикла Симачевой Е.Н.

Методическая разработка занятия составлена в соответствии с требованиями Федерального государственного образовательного стандарта и рабочей программы дисциплины «Инженерная графика»

Методическая разработка урока имеет практическую направленность и значимость. Формируемые в процессе расчетно-графической работы умения и навыки могут быть использованы студентами в будущей профессиональной деятельности.

Методическая разработка включает титульный лист, содержание, основную часть, отдельно представлены приложения. В пояснительной записке отражаются: обоснование, актуальность темы; цель, задачи. Основная часть представляет собой подробное описание хода урока, где прописаны все этапы занятия: организационная часть, повторение материала, самостоятельная практическая работа студентов, в ходе которой преподаватель производит корректировки, промежуточный контроль работы студентов.

Работа структурирована, последовательна, логична. Содержание разработки соответствует выбранной теме. Достаточно высока практическая значимость работы.

Методическая разработка составлена грамотно и может быть рекомендована для использования в работе преподавателями дисциплин профессионального цикла.

Главный инженер ООО «ВЭК» А.Ю. Сыворотко

Пояснительная записка

Умение читать чертежи и знание правил их выполнения и оформления – это условия успешного овладения техническими знаниями. Инженерная графика - дисциплина общепрофессионального цикла, формирующая базовые знания, необходимые для освоения специальных общетехнических дисциплин. Это неотъемлемая составляющая часть при подготовке квалифицированных специалистов.

Целью проведения открытого урока является: формирование ценностно-смысловой, учебно-познавательной, коммуникативной, компетенций через информационной анализ технического учебного материала, что будет способствовать воспитанию профессионализма специалистов, оказывать влияние на формирование профессиональных и общекультурных компетенций обучающихся, их собственного практического и социального опыта.

При проведении урока используются следующие формы обучения:

- комбинация элементов традиционных методик с инновационными подходами;
 - наличие наглядности;
 - использование компьютерных технологий;
- тестирование с использованием компьютера и мультимедийного проектора;
- активизация деятельности студентов и преподавателя на основе сотрудничества, сотворчества, соавторства;
 - акцент на практической значимости материала.

Прогнозируемый результат:

В результате изучения темы урока обучающийся должен уметь:

-читать сборочные чертежи;

знать:

- -основные правила разработки, оформления и чтения конструкторской документации;
 - -общие сведения о сборочных чертежах;
 - -правила выполнения чертежей;
 - -требования единой системы конструкторской документации (ЕСКД);
 - -основные приемы техники черчения.

Тема урока: Расчетно - графическая работа «Сборочный чертеж с применением резьбовых соединений»

Дидактическая цель урока — формирование знаний, умений и практических навыков обучающихся по данной теме.

Цели урока:

1.Обучающая:

- -обучение конструкторско-техническим умениям и навыкам;
- -контроль степени усвоения основных ЗУН, изученных и сформированных на предыдущих уроках;
 - -обеспечение усвоения опережающих ЗУН.

2.Развивающая:

- формирование у обучающихся технического мышления, пространственных представлений, способностей познания техники с помощью графических обозначений и использования современных методов проектирования.
- формирование научных знаний через применение условных обозначений, графических и буквенных, установленных ГОСТами и ЕСКД.
 - интеграция мыслительной и практической деятельности
 - обучение умению устанавливать межпредметные связи;
 - формирование умений планирования работы и самоконтроля.

3. Воспитательная:

- способствовать расширению общего кругозора обучающихся;
- понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес;
 - создать положительную мотивацию к изучению дисциплины;
- выработка при решении поставленных задач таких профессионально значимых качеств, как самостоятельность, ответственность, точность, творческая инициатива.

Методическая цель:

Показать методы достижения активизации мыслительной деятельности обучающихся на основе использования новых и информационных технологий.

Тип урока: урок комплексного применения ЗУН обучающихся.

Форма урока: индивидуальная (учебная цель для всех общая, но работают самостоятельно, в индивидуальном темпе).

Вид урока: Расчетно-графическая работа.

Методы познавательной деятельности: репродуктивный, частично – поисковый с элементами исследования.

Методы обучения: словесные, наглядные, практические.

Материально-техническое оснащение урока:

- -компьютер;
- -мультимедийный проектор;
- -методические указания к расчетно-графической работе: «Сборочный чертёж с применением резьбовых соединений»;
- -чертёжный инструмент: чертежная бумага формата A 3, линейки, карандаши, ластики.
 - -справочные материалы.

Базовые (опорные) знания:

по дисциплине «Инженерная графика»:

темы:

- «Графическое оформление чертежей»
- «Изображения виды, разрезы, сечения»
- «Резьба и резьбовые соединения»
- «Сборочные чертежи деталей»

Межпредметные знания:

по дисциплине «Материаловедение»

- тема: «Металлы и сплавы»
- по дисциплине «Техническая механика»
- тема «Резьбы»

Тематический план урока

- 1. Организационный момент 3 мин.
- 2. Постановка цели и задач урока. Мотивация учебной деятельности учащихся 1 мин.
- 3. Актуализация опорных знаний. Воспроизведение и коррекция опорных знаний -15 мин.
 - 4. Динамическая пауза 1 мин.
 - 5. Практическая часть 20 мин.
 - 6. Подведение итогов. Домашнее задание 5 мин.

Структурный план урока

1. Организационный момент:

Приветствие, проверка отсутствующих, проверка готовности к уроку (тетрадь, чертежный инструмент).

Преподаватель:

Надеюсь, у Вас хорошее самочувствие, хорошее настроение, ведь это является условием высокой работоспособности на уроке.

2. Постановка цели и задач урока. Мотивация учебной деятельности учащихся.

Преподаватель:

Машины, оборудование и бытовая техника - все эти механизмы в своей конструкции имеют множество деталей. Их качественное соединение — гарантия надежности и безопасности при работе. Сегодня на уроке у вас будет возможность самостоятельно разработать прочное соединение и выполнить чертеж этого соединения. Мы приступим к выполнению расчетно-графической работы «Сборочный чертеж с применением резьбовых соединений».

3. Актуализация опорных знаний. Воспроизведение и коррекция опорных знаний.

Преподаватель:

Для того чтобы выполнить поставленные задачи нам нужны знания по ранее изученным темам «Сборочные чертежи» и «Резьбовые соединения», поэтому необходимо повторить теоретические вопросы по данным темам.

Проводится фронтальный опрос

1 вопрос: Что такое сборочный чертеж?

Предполагаемый ответ:

Сборочный чертеж — это документ, содержащий изображения сборочной единицы, и данные необходимые для ее сборки и контроля. Сборочный чертеж дает полное представление о форме, назначении и составе сборочной единицы.

2 вопрос: Что такое позиции на сборочном чертеже?

Предполагаемый ответ:

Позиции — это порядковые номера, присваиваемые изображениям деталей сборочной единицы.

3 вопрос: Какой документ определяет состав сборочной единицы? Предполагаемый ответ: Спецификация.

4 вопрос: Как называется процесс разработки и выполнения рабочих чертежей деталей по сборочному чертежу?

Предполагаемый ответ:

Деталирование.

5 вопрос: Какие резьбовые соединения вы знаете?

Предполагаемый ответ:

Болтовое, винтовое, шпилечное соединения.

Преподаватель:

Я надеюсь, опираясь на эти знания, вы самостоятельно сможете ответить на вопросы по данному сборочному чертежу.

На экран выводится изображение сборочного чертежа.

Студенты получают вопросы для индивидуальной самостоятельной работы и раздаточный материал: изображение сборочного чертежа, спецификацию (приложение 1).

Время выполнения работы -10 мин.

Преподаватель:

Я предлагаю вам самостоятельно проверить работы ваших товарищей (студенты обмениваются листами с ответами). Для этого прочитаем чертеж у доски (экран с изображением сборочного чертежа) (приложение 2)

К доске приглашается студент и самостоятельно, а также при помощи наводящих вопросов преподавателя и студентов читает сборочный чертеж.

При чтении сборочного чертежа рекомендуется придерживаться следующей последовательности:

- 1. Изучить содержание основной надписи, выяснив название сборочной единицы и масштаб ее изображения.
 - 2. Рассмотреть на сборочном чертеже виды, разрезы, сечения.
- 3. Используя спецификацию, определить, из скольких деталей состоит изделие, выяснить название каждой из них и материал, из которого они изготовлены.
 - 4. Выявить виды соединений деталей, использованные в изделии.
 - 5. Установить принцип работы и последовательность сборки изделия.

Студенты, находят правильные ответы и проверяют самостоятельную работу.

(этот вид деятельности позволяет активизировать внимание и повышает ответственность перед товарищами).

Преподаватель:

Хочу обратить внимание, что одним из пунктов чтения чертежа является умение определить последовательность сборки изделия. Предлагаю выстроить порядок сборки - разборки балансира в игровой форме.

4. Динамическая пауза:

- студенты получают карточки с номерами позиций изображений деталей сборочной единицы;
 - определяют наименование детали (используют спецификацию);
- преподаватель последовательно собирает (условно) балансир и каждый студент быстро встает, услышав наименование своего номера позиции:

Преподаватель:

Выполняем сборку балансира: взять корпус, установить дужку, установить болт, шайбу, затянуть гайку, установить плечо, ввернуть шпильку, установить шайбу, затянуть гайку, ввернуть винт.

- затем выполняется разборка (условно) и студенты должен занять свои места за партой.

5. Практическая часть.

Преподаватель:

Подведем итоги проделанной работы. Изучив чертеж, мы понимаем, что для обеспечения прочного соединения деталей сборочной единицы (балансира) необходимо правильно подобрать размеры крепежных деталей. Ведь именно это является целью выполнения расчетно-графической работы, и начнем мы с выполнения расчета болтового соединения. Расчет шпилечного и винтового соединения выполним на следующем занятии.

Студенты получают раздаточный материал (методические указания, таблицы со справочными данными) (приложение 3).

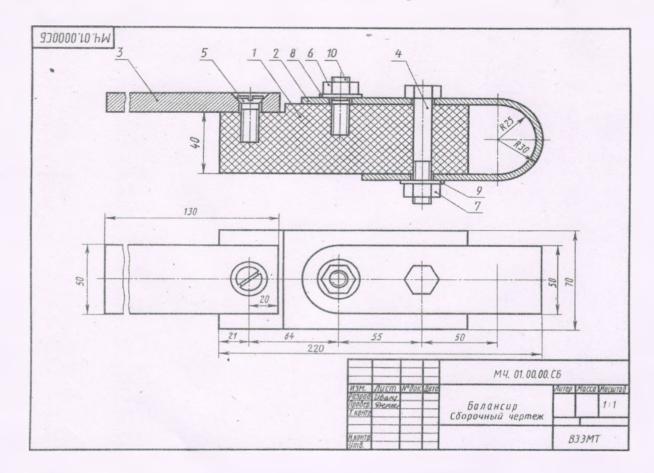
На экран выводится изображение болтового соединения.

Под руководством преподавателя студенты приступают к выполнению самостоятельной работы. Индивидуальная форма организации познавательной деятельности на уроке предполагает выполнение обучающимися индивидуальных заданий на уровне их учебных возможностей и способностей, своим темпом. В ходе такой работы допускается сотрудничество с другими студентами группы, предполагается, более активное взаимодействие с учителем.

6. Подведение итогов.

Преподаватель: Вы успешно справились с выполнением работы и полученные вами знания и умения могут быть использованы в будущей профессиональной деятельности.

Домашнее задание: Используя расчетные данные, вычертить болтовое соединение, оформить чертеж.


Вопросы для самостоятельной работы.

- 1. Как называется сборочная единица?
- 2. В каком масштабе выполнен чертеж?
- 3. Сколько изображений на чертеже?
- 4. Как называются изображения?
- 5. Сколько крепежных деталей на чертеже?
- 6. Как называется деталь под номером позиции «2»
- 7. Сколько гаек в сборочной единице?
- 8. При помощи какого соединения плечо крепится корпусу?

Ответы:

- 1. Балансир
- 2. M 1:1
- 3. 2
- 4. Вид сверху, вид сбоку
- 5. 7
- 6. Дужка амортизационная
- 7 2
- 8. Винтовое соединение

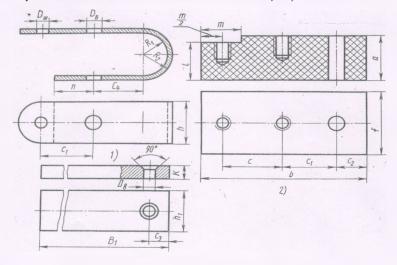
Сборочный чертеж.

CHOS	TANK.	Обозна чение	Наименование	Men	Приме чание
		Management 17	Документация		
12		M4 01,00.00 CE	Еборочный чертеж		
-			Детали		
+	1	M4 01 00.81	Корпус	1	
	2	M4. 01. 00. 02	Дужка амертизациен		
			ная	7	
-	3	M4. 01 00 03	Плеча падставки	1	
+			Стандартные изделия		
+	4		50AM M12×80	1	
			rac1 7798-70		
	5		Винт М10×35	1	
			TOET 17415 - 72		
	6		Гайка ГОЕТ 5915-10	1	
\perp	7		M 10	1	
			M12		
_	3		Шайба ГОЕТ 11371-68	1	
	9.		10×2	1	
┸			12 × 2,5		
	7.0		Шпилька M10×18 (📆)	1	
╀			FOCT 11765 - 55		
+	\vdash				
	N N	Maria Cara Cara	M4, 01,00, 00		
азра кон	10		балансир в	<u>3</u> 33 M	5

Спецификация к сборочному чертежу.

Методические указания к расчетно-графической работе «Сборочный чертеж с применением резьбовых соединений»

Лист 1 «Сборочный чертеж»


Лист 2 «Спецификация»

Содержание: Сборочный чертеж выполняется на листе чертежной бумаги формата А 3. Спецификация к сборочному чертежу — на листе формата А 4. *Цель задания:* Изучить правила выполнения и оформления сборочных чертежей, резьбовых соединений.

Варианты задания

	Таблица 3.																				
Варианты	D_{δ} для	\overline{d}_I	d_2	а	b	С	c_I	C2	C3	C4	1	f	k	h	h_1	m	R_I	R_2	n	B_I	M
	определ																				
	ения																				
1	11	10	8	44	160	64	50	25	20	45	40	70	10	50	50	42	22	30	40	130	1:1
2	11	10	10		-	-	- :	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3	13,2	10	8	44	170	64	55	30	20	50	40	70	12	50	50	42	22	30	40	130	-
4	13,2	12	10		-	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5	15,4	12	10	44	180	69	60	30	20	50	40	70	15	50	50	42	22	32	40	130	-
6	15,4	14	12	-	-	-	-	-	-	-	-	-	-	-	-	-	-]	-	-	-]	-
7	15,4	12	14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	- 1	- 1	-
8	17,6	14	12	44	180	69	60	30	20	50	40	70	15	50	50	42	22	32	40	130	-
9	17,7	16	14	-	- ,	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
10	17,6	14	16	-	- :	-	-	-	- }	-	-	-	-	-	-	-	-	-	-	-	-
11	13,2	10	10	50	170	64	55	30	20	50	40	70	16	50	50	42	25	30	40	130	-

Детали и буквенные обозначения размеров деталей: (*буквенные обозначения* следует заменить числовыми данными из таблицы 3)

Последовательность расчета болтового соединения.

Для своего варианта определите $Д_6$ – диаметр отверстий под болт (*табл.3*). Определите наружный диаметр резьбы болта d по условным соотношениям ($Д_6$ =1,1d).

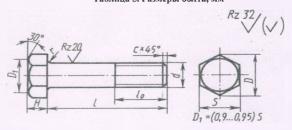
Внутренний диаметр резьбы болта d_0 брать приближенно по формуле d_0 = 0,85 d.

Определим длину болта l сложением: $a + 2(R_2 - R_1) + S + H + a'$,

где а (maбл.3); R_2 - R_1 (maбл.3); H-высота гайки (maбл.7); S-высота шайбы (maбл.8); a'-выход конца болта =3 мм. По ГОСТ 77988 — 70 (maбл.4) выбираем по подсчитанному размеру стандартную длину болта и длину резьбы.

Размеры головки болта по ГОСТ 7798 – 70* (*табл. 5*).

Размеры гайки определим по ГОСТ 5.915 - 70* (табл. 7).


Размеры шайбы по ГОСТ 11371 – 78* (табл. 8).

Записать обозначение болта, гайки, шайбы.

Таблица 4. Болты с шестигранной головкой (нормальной точности), ГОСТ 7798 – 70*. Определение длины резьбы I_{θ}

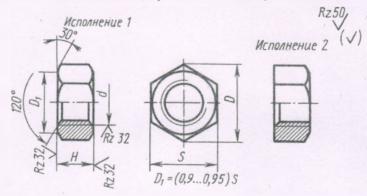

Номинальная длина болта <i>l</i> , мм		Номинальные диаметры резьбы <i>d</i> ,мм										
	8	10	12	14	16							
45	22	26	30	34	42							
50	22	26	30	34	42							
55	22	26	30	34	42							
60	22	26	30	34	42							
65	22	26	30	34	42							
70	22	26	30	34	42							
75	22	26	30	34	42							
80	22	26	30	34	42							
85	22	26	30	34	42							
90	22	26	30	34	42							

Таблица 5. Размеры болта, мм

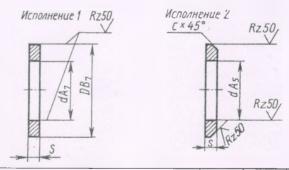

Номинальные диаметры p езьбы, d	8	10	12	14	16
Шаг резьбы:					
крупный	4,2	1,5	1,75	2	2
мелкий	1	1,25	1,25	1,5	1,5
Размер «под ключ»	13	17	19	22	24
Высота головки Н	5,5	7,0	8,0	9,0	10
Диаметр описанной	14,2	18,7	20,9	42,3	26,5
окружности <i>D</i>					
Радиус под головкой	0,25	0,40	0,60	0,60	0,60

Таблица 7. Гайки шестигранные (нормальной точности) по ГОСТ 5915 – 70. Размеры, мм

TT v								_						
Номинальный							/4.00							
диаметр	6	8	10	12	(14)	16	(18)	20	(22)	24	(27)	30	36	48
резьбы														
Шаг резьбы:														
крупный	1	1,25	1,5	1,75	2	2	2,5	2,5	2,5	3	3	3,5	4	5
мелкий	0,75	1	1,25	1,25	1,5	1,5	1,5	1,5	2	2	2	2	3	3
Размер «под														
ключ» S	10	13	17	19	22	24	27	30	32	36	41	46	55	75
номинальный														
Диаметр														
описанной	10,9	14,2	18,7	20,9	242	26.6	20.0	22.2	25.0	20.6	45.0	50.0	(0.0	02.4
окружности	10,9	14,2	10,7	20,9	24,3	26,6	29,9	33,3	35,0	39,6	45,2	50,9	60,8	83,4
D, не менее														
Высота Н	4	_	0	10	1.1	1.2	1.5	16	1.0	10	20	2.4		
номинальная	4	5	8	10	11	13	15	16	18	19	22	24	29	3Щ

Таблица 8. Шайбы по ГОСТ11371 — 78 и шайбы увеличенные по ГОСТ 6958 — 78

-	Обозначени	Диаметр стержня крепежной	6	8	10	12	14	16
	e	детали						
	d	Шайбы по ГОСТ 11371 – 78	6,4	8,4	10,5	13	15	17
		Шайбы увеличенные по ГОСТ 6958 - 78	6,4	8,4	10,5	13	15	17
	D	Шайбы по ГОСТ 11371 – 78	12,5	17	21	24	28	30
		Шайбы увеличенные по ГОСТ 6958 - 78	18	24	30	36	42	48
	S	Шайбы по ГОСТ 11371 - 78	1,6	1,6	2,0	2,5	2,5	3
		Шайбы увеличенные по ГОСТ 6958 - 78	1,6	2,0	2,5	3,0	3	4,0
	С	Высота фаски по ГОСТ 11371 – 78	-	-	-	-	-	-
		Высота фаски по ГОСТ 6958 – 78	0,4	0,5	0,6	0,8	0,8	1,0